Given :- O is the center of circle.
Angle BCO =
![{m}^{0} {m}^{0}](https://tex.z-dn.net/?f=+%7Bm%7D%5E%7B0%7D+)
Angle BAC =
![{n}^{0} {n}^{0}](https://tex.z-dn.net/?f=+%7Bn%7D%5E%7B0%7D+)
Find the value of m+n
Attachments:
![](https://hi-static.z-dn.net/files/d79/5027dd37a925e9da8dd43c4c2858a034.jpg)
Answers
Answered by
16
•Given→
angle BCO = m°
angle BAC = n°
• To find→
value of m+n
• Solution→
angle BCO = angle CBO [ OB = OC]
angle CBO = m
∆BOC is a triangle.
angle BOC = 180° -( m+m)
= 180° -2m
We know that,
angle BOC = 2 angle BAC
→180°-2m = 2n
→-2m-2n = -180°
→ -2(m+n) = -180°
→ m+n = -180°/-2
→ m+n = 90°
• Answer→
Value of (m+n) is 90°
Similar questions