Math, asked by sharanyalanka7, 18 days ago

Given P= (a,0) and Q= (-a,0) and R is a variable point on one side of the line PQ such that ∠RPQ−∠RQP=2α. the locus of the point R is :-

Answers

Answered by mathdude500
18

Gɪᴠᴇɴ :-

  • Coordinates of point P be (a, 0) and Q be (- a, 0).

  • R be a variable point on one side of PQ such that ∠RPQ−∠RQP=2α.

Tᴏ Fɪɴᴅ :

  • The locus of point R.

Construction :-

Through R, draw RS perpendicular to PQ intersecting PQ at S.

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

Let assume that coordinates of R be (x, y).

So,

  • OS = x

  • RS = y

  • QS = OS + OQ = a + x

  • PS = OP - OS = a - x

Let

  • ∠RPQ = d

  • ∠RQP = c

Thus,

\rm :\longmapsto\:2 \alpha  = d - c

\rm :\implies\:tan2 \alpha  = tan(d - c)

\bf:\longmapsto\:tan2 \alpha  = \dfrac{tand - tanc}{1 + tanc \: tand}  -  -  - (1)

 \blue{\boxed{ \quad \because \:  \bf \: tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} \quad \quad}}

Now, we have to find the value of tanc and tand,

So,

Consider,

\rm :\longmapsto\:In \: \triangle \: RQS

\rm :\longmapsto\:tanc = \dfrac{RS}{QS}

\bf :\longmapsto\:  \purple{\boxed{ \bf \: tanc = \dfrac{y}{a + x}}}  -  -  - (2)

Consider,

\rm :\longmapsto\:In \: \triangle \: RPS

\rm :\longmapsto\:tand = \dfrac{RS}{PS}

\bf :\longmapsto\:  \purple{\boxed{ \bf \: tand = \dfrac{y}{a - x}}}  -  -  - (3)

Now,

On substituting the values of tanc and tand in equation (1),

\rm :\longmapsto\:tan2 \alpha  = \dfrac{\dfrac{y}{a - x}  -  \dfrac{y}{a + x} }{ \:  \:  \:  \: 1  +  \dfrac{y}{a - x}  \times \dfrac{y}{a + x} \:  \:  \:  \:  }

\rm :\longmapsto\:tan2 \alpha  = \dfrac{\dfrac{y(a + x) - y(a - x)}{ \cancel{(a - x)(a + x)}}}{ \:  \:  \:  \: \dfrac{(a + x)(a - x) +  {y}^{2} }{ \cancel{(a - x)(a + x)}}  \:  \:  \:  \:  }

\rm :\longmapsto\:tan2 \alpha  = \dfrac{y( \cancel{a} + x -  \cancel{a} + x)}{ \:  \:  \: {a}^{2} -  {x}^{2}  +  {y}^{2} \:  \:  \: }

\rm :\longmapsto\:tan2 \alpha  = \dfrac{2xy}{ \:  \:  \: {a}^{2} -  {x}^{2} +  {y}^{2} \:  \:  \: }

\rm :\longmapsto\:({a}^{2} -  {x}^{2} +  {y}^{2})tan2 \alpha  =   2xy

\rm :\longmapsto\:2xy - ({a}^{2} -  {x}^{2} +  {y}^{2})tan2 \alpha = 0

\bf :\longmapsto\:({x}^{2} - {y}^{2} -  {a}^{2})tan2 \alpha + 2xy = 0

Or

\bf:\longmapsto\:{x}^{2}-{y}^{2}-{a}^{2} + 2xy\:cot2\alpha=0

Hence,

 \underbrace{\purple{ \boxed{ \tt \: Locus\:of\: R \:is\rm\: \: {x}^{2}-{y}^{2}-{a}^{2} + 2xy\:cot2\alpha=0}}}

Attachments:
Answered by harry366813
0

Step-by-step explanation:

InΔRMP,

tanθ=

MP

RM

=

a−x

1

y

1

InΔRQM,

tanϕ=

QM

RM

=

a+x

1

y

1

\end{align}$$

And also given that,

∠RPQ−∠RQP=2α

θ−ϕ=2α

Taking tan both side and we get,

tan(θ−ϕ)=tan2α

1+tanθtanϕ

tanθ−tanϕ

=tan2α

⇒tan2α=

1+(

a−x

1

y

1

)(

a+x

1

y

1

)

(

a−x

1

y

1

)−(

a+x

1

y

1

)

⇒tan2α=

(a−x

1

)(a+x

1

)

(a−x

1

)(a+x

1

)+y

1

2

(a−x

1

)(a+x

1

)

ay

1

+x

1

y

1

−ay

1

+x

1

y

1

⇒tan2α=

a

2

−x

1

2

+y

1

2

2x

1

y

1

cot2α

1

=

a

2

−x

1

2

+y

1

2

2x

1

y

1

⇒a

2

−x

1

2

+y

1

2

=2x

1

y

1

cot2α

⇒a

2

−x

1

2

+y

1

2

−2x

1

y

1

cot2α=0

⇒x

1

2

−y

1

2

+2x

1

y

1

cot2α−a

2

=0

Hence, the locus of this equation is

x

2

−y

2

+2xycot2α−a

2

=0

x

2

−y

2

+2xycot2α=a

2

Similar questions