Given P= (a,0) and Q= (-a,0) and R is a variable point on one side of the line PQ such that ∠RPQ−∠RQP=2α. the locus of the point R is :-
Answers
Gɪᴠᴇɴ :-
- Coordinates of point P be (a, 0) and Q be (- a, 0).
- R be a variable point on one side of PQ such that ∠RPQ−∠RQP=2α.
Tᴏ Fɪɴᴅ :
- The locus of point R.
Construction :-
Through R, draw RS perpendicular to PQ intersecting PQ at S.
Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :
Let assume that coordinates of R be (x, y).
So,
- OS = x
- RS = y
- QS = OS + OQ = a + x
- PS = OP - OS = a - x
Let
- ∠RPQ = d
- ∠RQP = c
Thus,
Now, we have to find the value of tanc and tand,
So,
Consider,
Consider,
Now,
On substituting the values of tanc and tand in equation (1),
Or
Hence,
Step-by-step explanation:
InΔRMP,
tanθ=
MP
RM
=
a−x
1
y
1
InΔRQM,
tanϕ=
QM
RM
=
a+x
1
y
1
\end{align}$$
And also given that,
∠RPQ−∠RQP=2α
θ−ϕ=2α
Taking tan both side and we get,
tan(θ−ϕ)=tan2α
⇒
1+tanθtanϕ
tanθ−tanϕ
=tan2α
⇒tan2α=
1+(
a−x
1
y
1
)(
a+x
1
y
1
)
(
a−x
1
y
1
)−(
a+x
1
y
1
)
⇒tan2α=
(a−x
1
)(a+x
1
)
(a−x
1
)(a+x
1
)+y
1
2
(a−x
1
)(a+x
1
)
ay
1
+x
1
y
1
−ay
1
+x
1
y
1
⇒tan2α=
a
2
−x
1
2
+y
1
2
2x
1
y
1
⇒
cot2α
1
=
a
2
−x
1
2
+y
1
2
2x
1
y
1
⇒a
2
−x
1
2
+y
1
2
=2x
1
y
1
cot2α
⇒a
2
−x
1
2
+y
1
2
−2x
1
y
1
cot2α=0
⇒x
1
2
−y
1
2
+2x
1
y
1
cot2α−a
2
=0
Hence, the locus of this equation is
x
2
−y
2
+2xycot2α−a
2
=0
x
2
−y
2
+2xycot2α=a
2