Math, asked by Roushanarya2106, 10 months ago

Given: p-q=6, pq=36
To find: p+q

Answers

Answered by BrainlyPopularman
40

GIVEN :

p - q = 6

• pq = 36

TO FIND :

Value of p + q = ?

SOLUTION :

 \\  \sf \implies \: p - q = 6 \\

• Square on both sides –

 \\  \sf \implies \: (p - q) ^{2}  =  {(6)}^{2}  \\

 \\  \sf \implies \:  {p}^{2}  +  {q}^{2}   - 2pq =  36 \:  \:  \:  \:  [  \: \because \:  {(a - b)}^{2}  =  {a}^{2} +  {b}^{2}  - 2ab ]\\

• Put the value –

 \\  \sf \implies \:  {p}^{2}  +  {q}^{2}   - 2(36) =  36 \\

 \\  \sf \implies \:  {p}^{2}  +  {q}^{2}   - 72 =  36 \\

 \\  \sf \implies \:  {p}^{2}  +  {q}^{2}    =  36 + 72 \\

 \\  \sf \implies \:  {p}^{2}  +  {q}^{2}    =  108  \:  \:  \:   \:  \:  -  -  - eq.(1)\\

• Now let's find the value of (p + q)

 \\  \sf \implies \: (p + q)^{2} =  {p}^{2}  +  {q}^{2}  + 2pq \\

• We should write this as –

 \\  \sf \implies \: p + q =  \sqrt{ {p}^{2}  +  {q}^{2}  + 2pq} \\

• Using eq.(1) –

 \\  \sf \implies \: p + q =  \sqrt{ 108  + 2(36)} \\

 \\  \sf \implies \: p + q =  \sqrt{ 108  + 72} \\

 \\  \sf \implies \: p + q =  \sqrt{ 180} \\

 \\  \sf \implies \: p + q =  \sqrt{5 \times 36} \\

 \\  \implies \large { \boxed{ \sf p + q =6  \sqrt{5 } }}\\

• Hence , The value of (p + q) =    \sf = 6 \sqrt{5} \\

Answered by ItzArchimedes
6

Given:

  • p - q = 6
  • pq = 36

To find:

  • p + q

Solution:

Taking the given equations

p - q = 6 ……… eq(i)

pq = 36 ……… eq(ii)

Taking equation 1 and squaring on both sides

→ (p - q)² = 6²

→ p² - q² - 2pq = 36

Already given that pq = 36

→ p² - q² - 2(36) = 36

→ p² - q² - 72 = 36

→ p² - q² = 108 ……… eq ( iii )

Now, let

p + q be x

p + q = x

Squaring on both sides

→ (p + q)² = x²

→ p² + q² + 2pq = x²

→ 108 + 2(36) = x²

→ 180 = x²

→ x = √180

→ x = 6√5

Hence , p + q = 65

Similar questions