Math, asked by shezu4201, 5 hours ago

Given P(x)=x^3-4x^2+4x-16, find the zeros, real and non-real of P
The zeros are:
Write P in factored form (as a product of linear factors). Be sure to write the full equation, including P(x)=.

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given cubic polynomial is

\rm :\longmapsto\:P(x) =  {x}^{3} -  {4x}^{2} + 4x - 16

\rm :\longmapsto\:P(x) =  {x}^{2}(x - 4) + 4(x - 4)

\rm :\longmapsto\:P(x) =  ({x}^{2} + 4)(x - 4)

can be further rewritten as

\rm :\longmapsto\:P(x) =  ({x}^{2}  - ( -  4))(x - 4)

\rm :\longmapsto\:P(x) =  ({x}^{2}  - 4 {i}^{2} )(x - 4)

\red{ \bigg\{  \sf \: \because \:  {i}^{2}  =  - 1 \bigg\}}

\rm :\longmapsto\:P(x) =  ({x}^{2}  - {(2i)}^{2} )(x - 4)

\rm :\longmapsto\:P(x) = (x + 2i)(x - 2i)(x - 4)

\red{ \bigg\{  \sf \: \because \:  {x}^{2}  -  {y}^{2}  = (x - y)(x + y) \bigg\}}

So, zeroes of the polynomial P(x) are

\rm :\longmapsto\:x = 2i \:  \: or \:  \:  - 2i \:  \: or \:  \: 4

Hence,

Factorized form of P(x)

 \green{\rm :\longmapsto\:\boxed{\tt{ P(x) = (x + 2i)(x - 2i)(x - 4)}}}

And zeroes of P(x) are

 \purple{\rm :\longmapsto\:\boxed{\tt{ 4, \:  \: 2i, \:  \:  - 2i}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Answered by Missincridedible
5

\color{blue}{ \colorbox{orange}{\colorbox{red} {hope \: it \: helps \: you}}}

Attachments:
Similar questions