Physics, asked by amitshokeen, 10 months ago

given s= t^3 -6t^2 find int. acceleration when body is at rest​

Answers

Answered by BrainlyPopularman
27

GIVEN :

S = t³ - 6t²

TO FIND :

• Acceleration when body is at rest .

SOLUTION :

  \\ \implies \bf S=  {t}^{3} - 6 {t}^{2}  \\

• Differentiate with respect to 't'

  \\ \implies \bf  \dfrac{dS}{dt}=   \dfrac{d({t}^{3})}{dt} - 6  \dfrac{d({t}^{2})}{dt}  \\

  \\ \implies \bf  \dfrac{dS}{dt}=   3 {t}^{2}  - 12t  \\

• Body is in rest position –

  \\ \implies \bf  \dfrac{dS}{dt}=0\\

  \\ \implies \bf  3 {t}^{2}  - 12t=0\\

  \\ \implies \bf  t(3t- 12)=0\\

  \\ \implies \bf  t = 0,t=4\\

• Again Differentiate with respect to 't' –

  \\ \implies \bf  \dfrac{d^{2} S}{dt ^{2} }=3(2)t - 12 \\

  \\ \implies \bf  \dfrac{d^{2} S}{dt^{2} }=6t - 12 \\

▪︎When t = 0 :

  \\ \implies \bf  \left( \dfrac{d^{2} S}{dt ^{2} } \right) _{t = 0}=6(0) - 12 \\

  \\ \implies \bf Acceleration = - 12\:  \dfrac{m}{ {s}^{2} }  \\

▪︎ When t = 4 :

  \\ \implies \bf  \left( \dfrac{d^{2} S}{dt ^{2} } \right) _{t =4}=6(4) - 12 \\

  \\ \implies \bf \left( \dfrac{d^{2} S}{dt ^{2} } \right) _{t =4} = 24- 12 \\

  \\ \implies \bf Acceleration = 12  \:  \dfrac{m}{ {s}^{2} } \\

Similar questions