Given sec A = 2 Find the value of
(sin^3 A + cos^3 A)/(sin A + cos A) +
(sin^3 A - cos^3 A)/(sin^2 A - cos A)
Answers
Step-by-step explanation:
Given :-
Sec A = 2
To find :-
Value of [(sin³ A + cos³ A)/(sin A + cos A )] + [(sin³ A -cos³ A) /(sin² A - cos A)]
Solution :-
Given that sec A = 2
=> 1 / cos A = 2
=> cos A = 1/2 -----------(1)
We know that
sin² A + cos² A = 1
=> sin² A + (1/2)² = 1
=> sin² A + (1/4) = 1
=> sin² A = 1-(1/4)
=> sin² A = (4-1)/4
=> sin² A = 3/4
=> sin A = √(3/4)
=> sin A = √3/2 ---------(2)
now,
(sin³ A + cos³ A)/(sin A+ cos A)
= (sin A+cos A)(sin² A+cos² A-sinAcos A) / (sin A+ cos A)
Since, a³+b³ = (a+b)(a²-ab+b²)
=>(sin A+cos A)(1-sin Acos A)/(sin A+cos A)
=> 1-sin A cos A
=> 1-[(√3/2)(1/2)]
=> 1-(√3/4)
=> (4-√3)/4
(sin³ A+cos³ A)/(sin A+cos A) = (4-√3)/4
and
sin³ A - cos³ A
=>(sin A-cos A)(sin² A+cos² A+sinAcos A)
since, a³-b³ = (a-b)(a²+ab+b²)
=> (sin A - cos A)(1+sin A cos A)
=> [(√3/2)-(1/2)][1+(√3/2)(1/2)]
=> [(√3-1)/2][1+(√3/4)]
=> [(√3-1)/2][(4+√3)/4]
=> (√3-1)(4+√3)/8
=> (4√3+3-4-√3)/8
=> (3√3-1)/8
sin³ A - cos³ A = (3√3-1)/8
and
sin² A-cos A
=> (√3/2)²-(1/2)
=> (3/4)-(1/2)
=> (3-2)/4
=> 1/4
sin² A-cos A = 1/4
Now,
(sin³ A - cos³ A)/(sin² A-cos A)
=> [(3√3-1)/8]/(1/4)
=> [(3√3-1)/8]×(4/1)
=> [4(3√3-1)/8]
=> (3√3-1)/2
(sin³ A-cos³ A)/(sin² A-cos A) = (3√3-1)/2
now,
[(sin³ A + cos³ A)/(sin A + cos A )] +
[(sin³ A -cos³ A) /(sin² A - cos A) ]
=> [(4-√3)/4] + [ (3√3-1)/2]
=> [(4-√3)+2(3√3-1)]/4
=> (4-√3+6√3-2)/4
=> (2+5√3)/4
Answer :-
[(sin³ A + cos³ A)/(sin A + cos A ) ]+
[(sin³ A -cos³ A) /(sin² A - cos A)] = (2+5√3)/4
Used formulae:-
→ sin² A + cos² A = 1
→ sec A = 1 / cos A
→ a³+b³ = (a+b)(a²-ab+b²)
→ a³-b³ = (a-b)(a²+ab+b²)
Step-by-step explanation:
Step-by-step explanation:
Given :-
Sec A = 2
To find :-
Value of [(sin³ A + cos³ A)/(sin A + cos A )] + [(sin³ A -cos³ A) /(sin² A - cos A)]
Solution :-
Given that sec A = 2
=> 1 / cos A = 2
=> cos A = 1/2 -----------(1)
We know that
sin² A + cos² A = 1
=> sin² A + (1/2)² = 1
=> sin² A + (1/4) = 1
=> sin² A = 1-(1/4)
=> sin² A = (4-1)/4
=> sin² A = 3/4
=> sin A = √(3/4)
=> sin A = √3/2 ---------(2)
now,
(sin³ A + cos³ A)/(sin A+ cos A)
= (sin A+cos A)(sin² A+cos² A-sinAcos A) / (sin A+ cos A)
Since, a³+b³ = (a+b)(a²-ab+b²)
=>(sin A+cos A)(1-sin Acos A)/(sin A+cos A)
=> 1-sin A cos A
=> 1-[(√3/2)(1/2)]
=> 1-(√3/4)
=> (4-√3)/4
(sin³ A+cos³ A)/(sin A+cos A) = (4-√3)/4
and
sin³ A - cos³ A
=>(sin A-cos A)(sin² A+cos² A+sinAcos A)
since, a³-b³ = (a-b)(a²+ab+b²)
=> (sin A - cos A)(1+sin A cos A)
=> [(√3/2)-(1/2)][1+(√3/2)(1/2)]
=> [(√3-1)/2][1+(√3/4)]
=> [(√3-1)/2][(4+√3)/4]
=> (√3-1)(4+√3)/8
=> (4√3+3-4-√3)/8
=> (3√3-1)/8
sin³ A - cos³ A = (3√3-1)/8
and
sin² A-cos A
=> (√3/2)²-(1/2)
=> (3/4)-(1/2)
=> (3-2)/4
=> 1/4
sin² A-cos A = 1/4
Now,
(sin³ A - cos³ A)/(sin² A-cos A)
=> [(3√3-1)/8]/(1/4)
=> [(3√3-1)/8]×(4/1)
=> [4(3√3-1)/8]
=> (3√3-1)/2
(sin³ A-cos³ A)/(sin² A-cos A) = (3√3-1)/2
now,
[(sin³ A + cos³ A)/(sin A + cos A )] +
[(sin³ A -cos³ A) /(sin² A - cos A) ]
=> [(4-√3)/4] + [ (3√3-1)/2]
=> [(4-√3)+2(3√3-1)]/4
=> (4-√3+6√3-2)/4
=> (2+5√3)/4