Math, asked by wpuinyabati, 1 day ago

Given sec A = 2 Find the value of
(sin^3 A + cos^3 A)/(sin A + cos A) +
(sin^3 A - cos^3 A)/(sin A - cos A)​

Answers

Answered by Aansh3962
0

step by step explanation:

Attachments:
Answered by RITESHD
0

Answer:

2

Step-by-step explanation:

 \frac{sin {}^{3 }a + cos {}^{3}a  }{sin \: a \:  +  \: cos \: a}  +  \frac{sin {}^{3 }a  -  cos {}^{3}a  }{sin \: a \:   - \: cos \: a}

 \frac{(sin {}^{3}a + cos {}^{3}a)(sin \: a \:  -  \: cos \: a)  \:  +  \: (sin {}^{3}a  -  cos {}^{3}a)(sin \: a \:   +   \: cos \: a)} {(sin  \: a{} + \: cos \: a)( sin  \: a{}  -  \: cos \: a) }

 \frac{2(sin {}^{4} - cos {}^{4})  }{sin {}^{2}a \:  -  \: cos {}^{2}a  }

 \frac{2(sin {}^{2}a + cos {}^{2} a) (sin {}^{2}a  -  cos {}^{2} a)}{sin {}^{2} a - cos {}^{2} a}

2(sin²a+cos²a)

= 2(1)

= 2

Similar questions