Math, asked by singhbhupender92, 8 months ago

given Sin A =1/3 find Cos A and Tan A​

Answers

Answered by Anonymous
1

\bf\huge\blue{\underline{\underline{ Question : }}}

Sin A =1/3 find Cos A and Tan A.

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • sin A = 1/3

To find,

  • cos A
  • tan A

Let,

We know that,

\tt\:\rightarrow \sin\:A = \cfrac{Opposite}{Hypotenuse} = \cfrac{1}{3}

Now,

  • Opposite = 1
  • Hypotenuse = 3
  • Adjacent = ?

By using Pythagoras theorem,

\tt\:(Hypotenuse)^{2} = (Opposite)^{2} + (Adjacent)^{2}

\sf\:\implies (AC)^{2} = (AB)^{2} + (BC)^{2}

\sf\:\implies (3)^{2} = (AB)^{2} + (1)^{2}

\sf\:\implies 9 = (AB)^{2} + 1

\sf\:\implies 9 - 1= (AB)^{2}

\sf\:\implies (AB)^{2}  = 8

\sf\:\implies (AB)  = \sqrt{8}

\sf\:\implies (AB)  =2 \sqrt{2}

Now,

\sf\:\implies \cos\:A = \cfrac{Adjacent}{Hypotenuse}

\sf\:\implies \cos\:A = \cfrac{2\sqrt{2}}{3}

\sf\:\implies \tan\:A = \cfrac{Opposite}{Adjacent}

\sf\:\implies \tan\:A = \cfrac{1}{2\sqrt{2}}

\underline{\boxed{\bf{\purple{\therefore \cos\:A = \cfrac{2\sqrt{2}}{3} \: ; \: \tan\:A = \cfrac{1}{2\sqrt{2}}}}}}\:\orange{\bigstar}

Similar questions