given sin A = √3/2 and cos B = 1/2 ,then the value of tan (A-B) is
Answers
Step-by-step explanation:
sinA=root3/2 therefore A=60
cosB=1/2 therefore B=30
tan(60-30)=tan(30)=1/root3
Trigonometry: Trigonometry is the study of angles and relations between angles and their sin, cos, tan, cosec, sec, cot ratios. There are many formulae for calculations:
• sin²A + cos²A = 1
• sec²A - tan²A = 1
• cosec²A - cot²A = 1
• sin2A = 2 sinA cosA
• cos2A = cos²A - sin²A
• tan2A = 2 tanA / (1 - tan²A)
tan(A - B) = 1/√3
EXPLANATION:
Method 1.
Given, sinA = √3/2, i.e., A = 60°
cosB = 1/2, i.e., B = 30°
Now, tan(A - B)
= tan(60° - 30°)
= tan30°
= 1/√3
Method 2.
Given, sinA = √3/2, i.e., A = 60° or, tanA = √3
cosB = 1/2, i.e., B = 30° or, tanB = 1/√3
Now, tan(A - B)
= (tanA - tanB)/(1 + tanA tanB)
= (√3 - 1/√3)/(1 + √3 * 1/√3)
= {(3 - 1)/√3}/(1 + 1)
= (2/√3)/2
= 1/√3