Math, asked by sunilrathore9969, 1 year ago

Given sin A =5/13 find the value of cos A and Tan A

Answers

Answered by Shinchan001
4
Given,

 \bf \: Sin \: A \: = \frac{5}{13} \\

We know that,

 \bf \: Sin \: \theta \: = \frac{Perpendicular}{Hypotenuse} \\

So, Perpendicular = 5
Hypotenuse = 13

So,

 {H}^{2} = {P}^{2} + {B}^{2} \\ \\ {(13)}^{2} = {(5)}^{2} + {(b)}^{2} \\ \\ {b}^{2} = 169 - 25 \\ \\ b = \sqrt{144} \\ \\ B = 12

Now,

Since,

 \bf \: Cos \: \theta \: = \frac{Base}{Hypoenuse} \\ \\ \bf \: Tan \: \theta \: = \frac{Perpendicular}{Base} \\

Putting the values,

 \bf \: Cos \: A = \frac{12}{13} \\ \\ \bf \: Tan \: A \: = \frac{5}{12} \\

If any doubt, please ask ;)
Attachments:
Similar questions