given: sinA + 2cosA = 1
to prove: 2sinA - cosA = 2
Answers
Answer:
Answer:
Heya army!
Step-by-step explanation:
Given that Sin A + 2 cos A = 1
Squaring on both sides, we get
(sin A + 2 cos A)^2 = 1
We know that (a+b)^2 = a^2 + b^2 + 2ab.
(sin^2 A + 4 cos^2 A + 4 sin A cos A) = 1
4 cos^2 A + 4 sin A cos A = 1 - sin^2 A
4 cos^2 A + 4 sin A cos A = cos^2 A
3 cos^2 A + 4 sin A cos A = 0
3 cos^2 A = - 4 sin A cos A ---- (1).
Given 2 sin A - cos A
Squaring on both sides, we get
(2 sin A - cos A)^2 = 4 sin^2 A + cos^2 A - 4 sin A cos A
= 4 sin^2 A + cos^2 A + 3 cos^2 A
= 4 sin^2 A + 4 cos^2 A
= 4(sin^2 A + cos^2 A)
= 4.
2 sin A - cos A = 2.
LHS = RHS.
Hope this helps!
Have a day like smooth like butter :)