English, asked by geetalibora19, 7 months ago

Given sinA=3/4,find cosA, tanA, cotA and secA​

Answers

Answered by madhulika7
3

Answer:

given \:  \:  \:  \:  \:  sinA =  \frac{3}{4 }  \\ \therefore \:  cosA =  \sqrt{1 -  {sin}^{2}A } \\   \\  =  \sqrt{1 -  { (\frac{3}{4} }^{2})  }  \\  \\  =  \sqrt{1 -  \frac{9}{16} }  \\ \\   =  \sqrt{ \frac{16 - 9}{16} }  \\   \\ =  \sqrt{ \frac{7}{16} }  \\   \\ =  \frac{ \sqrt{7} }{4}  \\  \\  \\ tanA =  \frac{sinA}{cosA}  \\   \\ =  \frac{ \frac{3}{4} }{ \frac{ \sqrt{7} }{4} }  \\  \\  =  \frac{3}{ \sqrt{7} }  \\  \\  \\ cotA =  \frac{1}{tanA}  \\  \\  =   \frac{1}{ \frac{3}{ \sqrt{7} } }  \\  \\  =  \frac{ \sqrt{7} }{3}  \\  \\  \\ secA =  \frac{1}{cosA}  \\  \\  \frac{1}{ \frac{ \sqrt{7} }{4} }  \\  \\  =  \frac{4}{ \sqrt{7} }  \\  \\  \\ cosecA =  \frac{1}{sinA}  \\  \\  =  \frac{1}{ \frac{3}{4} }  \\  \\  =  \frac{4}{3}

Answered by XxCharmingGuyxX
2

Answer:

givensinA=

4

3

∴cosA=

1−sin

2

A

=

1−(

4

3

2

)

=

1−

16

9

=

16

16−9

=

16

7

=

4

7

tanA=

cosA

sinA

=

4

7

4

3

=

7

3

cotA=

tanA

1

=

7

3

1

=

3

7

secA=

cosA

1

4

7

1

=

7

4

cosecA=

sinA

1

=

4

3

1

=

3

4

Similar questions