Given sinA=3/4 find cosA,tanA,cotA and secA
Answers
EXPLANATION.
sin A = 3/4. = p/h = perpendicular/hypotenuse.
By using Pythagorean theorem we get,
= H² = B² + P²
= (4)² = B² + (3)²
= 16 = B² + 9
= B² = 7
= B = √7
Sin A = p/h = 3/4.
Cos A = b/h = √7/4
Tan A = p/b = 3/√7
cosec A = h/p = 4/3
sec A = h/b = 4/√7
Cot A = b/p = √7/3
More information.
= Sin²A + Cos²A = 1
= Tan²A + 1 = Sec²A
= 1 + Cot²A = Csc²A
= Sin(2A) = 2sinAcosA
= Cos(2A) = Cos²A - Sin²A
= Sin²(A/2) = 1 - CosA/2
= Cos²(A/2) = 1 + CosA/2
- Sin A = 3/4.
- Cos A ,tan A,cot A & sec A.
Let us take a ΔABC , right angled at C.
We know :
❥Sinθ=Opposite side/Hypotenuse
Acc to question ,
=> Sin A = 3/4.
Let Opposite side = 3x & hypotenuse = 4x.
To find the adjacent side :
From pythagoras theorem ,
❥ AB² = BC²+AC²
⇒ (4x)² = (9x)² + AC²
⇒ 16x² = 9x²+AC²
⇒ 16x²- 9x² =AC²
⇒ 7x² = AC²
⇒ AC = √7 x.
Therefore, Adjacent side = √7 x.
Now,
→ Cos A = Adj / Hypotenuse
= √7 x / 4x
= √7 / 4.
→ Tan A = Opp / Adj
= 3x /√7 x
= 3/√7.
→ Cot A = Adj / opp
= √7 x/3x
= √7 / 3
→ Sec A = Hypotenuse / Adj
= 4x / √7 x.
= 4/√7.
-----------------------------------
✦ Cot A = 1/tan A
✦ Sec A = 1/cos A
✦ Sin²A+Cos²A = 1
✦ Tan A = sin A / cos A
✦ Cot A = Cos A / sin A
✦ Sec²A - tan²A = 1
✦ Cosec²A - cot²A = 1
___________________
HOPE IT HELPS !