Given
sinA +cosA =√3
prove that
tanA+cotA=1
Answers
Answered by
1
Step-by-step explanation:
given,sinA +cosA=√3
divide the equation by cos A-
tanA + 1 = √3cosA
tanA=√3cosA-1 (name this as eqn 1)
Now divide the equation by sinA-
1+cotA = √3sinA
cotA=√3sinA-1 (name this as eqn 2)
Now add eqn1 & eqn2 ,we get-
tanA + cotA = (√3cosA-1 )+ (√3sinA-1)
tanA + cotA=√3cosA+√3sinA-2
tanA + cotA=√3(cosA+sinA)-2
tanA + cotA=(√3*√3)-2
tanA + cotA=3-2
tanA + cotA=1. Hence proved.
I hope this helps☺️
Similar questions