Math, asked by modineel2004, 11 months ago

given tan A =4/3, find the other trigonometric ratios of the angle A​

Answers

Answered by deve11
23

Step-by-step explanation:

tan A = 4(opp)/3(adj)

hyp²=4²+3²

=16+9

hyp=√25=5units.

sin A=opp/hyp=4/5

cos A = adj/hyp=3/5.

cosec A= 1/sinA=5/4

sec A=1/cos A=5/3

cot A=1/tanA =3/4.

Answered by ItSdHrUvSiNgH
8

Step-by-step explanation:

 \huge\underline{\underline{\ Question}}

_________________________________________

 \tan(a)  =  \frac{4}{3}  \\ find \: other \: trigo \: ratios \: of \: angle \: of \: (a)

_________________________________________

 \huge\underline{\underline{\ Answer}}

 \tan(a)  =  \frac{4}{3}  \\   \huge \boxed{ \cot(a) =  \frac{1}{ \tan(a) } }  \\  \boxed{ \cot(a)  =  \frac{1}{ \tan(a) }  =  \frac{3}{4} } \\  \\ also \\ \huge\boxed{ { \tan}^{2}(a) + 1 =  { \sec}^{2} (a)} \\  \frac{16}{9}  + 1 =  { \sec}^{2} (a) \\  { \sec}^{2}(a)  =  \frac{25}{9} \\  \boxed{ \sec(a) =  \frac{5}{3}   } \\  \\  \huge \boxed{ \cos(a)  =  \frac{1}{ \sec(a) }}  \\  \cos(a) = ( \frac{1}{ \frac{5}{3} } )  \\   \boxed{ \cos(a)  =  \frac{3}{5} } \\  \\  \huge \boxed{ { \sin}^{2} (a) +  { \cos}^{2} (a) = 1} \\  { \sin}^{2} (a) = 1 -  \frac{9}{25}  \\  { \sin}^{2} (a) =  \frac{16}{25}  \\    \boxed{ \sin(a)  =  \frac{4}{5} } \\  \\  \huge \boxed{  \sin(a)  =  \frac{1}{ \csc(a) } } \\  \csc(a)  =  \frac{1}{ \frac{4}{5} }  \\  \boxed{ \csc(a)  =  \frac{5}{4} }

Similar questions