Math, asked by alwinsj777, 2 months ago

Given tan A =4/3. find the trigonometric ratios of the angle A. ​

Answers

Answered by ridhya77677
2

Answer:

 \tan(a)  =  \frac{p}{b}  \\ p = 4 \:, \: b \:  = 3 \\  {h}^{2}  =  {p}^{2}  +  {b}^{2} \\  {h}^{2}  =  {4}^{2}   +  {3}^{2}  \\h  =  \sqrt{25}  \\ h = 5 \\  \sin(a)  =  \frac{p}{h}  =  \frac{4}{5}  \\  \csc(a)  =  \frac{5}{4}  \\   \cos(a)  =  \frac{b}{h}  =  \frac{3}{5}  \\  \sec(a)  =  \frac{5}{3}  \\  \cot(a)  =  \frac{3}{4}

Answered by hemanji2007
4

Topic:-

Trigonometry

Question:-

Given\: tan\theta=4/3. find\:the\:trigonometric\: ratios\: of \:the\: angle\: \theta

Solution:-

Given tan \theta=4/3

 We\: know\: that \:tan\theta =\dfrac{Opposite\:side}{Adjacent\:side}

 Here, \:Opposite\:side= 4 \: and Adjacent\:side=3

 We \:need \:Hypotenuse\:side \: here

 We\: know\: that\:Pythageorous\:theorem

  Hypotenuse²=Opposite\:side²+Adjacent\:side²

 Hypotenuse²= 4²+3²

 Hypotenuse²= 16+9

 Hypotenuse²= 25

 Hypotenuse=\sqrt{25}

 Hypotenuse= 5

 Now\:we\:got\:all\:sides

 Sin\theta =\dfrac{Opposite\:side}{Hypotenuse\:side}

So,  Sin\theta=\dfrac{4}{5}

 cos\theta=\dfrac{Adjacent\:side}{Hypotenuse\:side}

 cos\theta=\dfrac{ 3}{5}

  cot\theta=\dfrac{Adjacent\:side}{Opposite\:side}

  cot\theta=\dfrac{3}{4}

 csc\theta=\dfrac{Hypotenuse\:side}{Opposite\:side}

 csc\theta=\dfrac{5}{4}

 sec\theta= \dfrac{Hypotenuse}{Adjacent}

 sec\theta= \dfrac{ 5}{3}

More Information:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Attachments:
Similar questions