Math, asked by jaisureshsuresh233, 7 months ago

given: tan theta = 6/4 find sin theta​

Answers

Answered by MysteriousAryan
0

Answer:

sin \alpha  =  \frac{4}{6}

Answered by karthikeyan12083
1

Step-by-step explanation:

let \: tan \: theta \:  = tan \alpha  \\  \tan( \alpha )  =  \frac{6}{4}  =  \frac{opp}{adj } \\ by \: pythagoras \: theorem \\  {hyp}^{2}  = {opp}^{2}  +  {adj}^{2}  \\ hyp =  \sqrt{ {6}^{2} +  {4}^{2}  }  \\ hyp =  \sqrt{36 + 16}  \\ hyp =  \sqrt{52}  \\ hyp =  \sqrt{4 \times 13} \\ hyp = 2 \sqrt{13} \\  \sin( \alpha )  =  \frac{opp}{hyp}  \\  \sin( \alpha  )  =  \frac{6}{2 \sqrt{13} }  \\  \sin( \alpha )  =  \frac{3}{ \sqrt{13} }

Similar questions