Math, asked by SwapnilChoubey, 1 year ago

Given, tanx = - 4/3. Lies in 2nd quadrant. Find sinx/2, cosx/2 and tanx/2.

Answers

Answered by Pitymys
97

Use the identity,

 \tan x=\frac{2\tan (x/2)}{1-\tan ^2(x/2)}  .

Here,

  \tan x=\frac{2\tan (x/2)}{1-\tan ^2(x/2)} =-\frac{4}{3} \\<br />4\tan ^2(x/2)-6\tan (x/2)-4=0\\<br />2\tan ^2(x/2)-3\tan (x/2)-2=0\\<br />(\tan (x/2)-2)(2\tan (x/2)+1)=0\\<br />\tan (x/2)=2,-\frac{1}{2}<br />

Since  x lies in the 2nd quadrant,  x/2 lies in the first quadrant. So,  \tan (x/2)&gt;0 .

Hence the solution is  \tan (x/2)=2\\<br />\sin (x/2)=\frac{2}{\sqrt{2^2+1}}  =\frac{2}{\sqrt{5}}  \\<br />\sin (x/2)=\frac{1}{\sqrt{2^2+1}}  =\frac{1}{\sqrt{5}}


Answered by ANJITYADAV777
9

Answer:

Use the identity,

\tan x=\frac{2\tan (x/2)}{1-\tan ^2(x/2)}  .

Here,

 \tan x=\frac{2\tan (x/2)}{1-\tan ^2(x/2)} =-\frac{4}{3} \\ 4\tan ^2(x/2)-6\tan (x/2)-4=0\\ 2\tan ^2(x/2)-3\tan (x/2)-2=0\\ (\tan (x/2)-2)(2\tan (x/2)+1)=0\\ \tan (x/2)=2,-\frac{1}{2}    

Since  x  lies in the 2nd quadrant,  x/2  lies in the first quadrant. So,  \tan (x/2)>0 .

Hence the solution is  \tan (x/2)=2\\ \sin (x/2)=\frac{2}{\sqrt{2^2+1}}  =\frac{2}{\sqrt{5}}  \\ \sin (x/2)=\frac{1}{\sqrt{2^2+1}}  =\frac{1}{\sqrt{5}}  

Step-by-step explanation:

Similar questions