Math, asked by kamalhajare543, 8 hours ago

Given:

\sf \overrightarrow{\sf \ A \ } = 5\hat{i} - \hat{j} - 3\hat{k}


\sf \overrightarrow{\sf \ B \ } = \hat{i} + 3\hat{j} - 5\hat{k}




To prove:

\sf \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } \perp\sf \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }
And No Spam. ​

Answers

Answered by Steph0303
89

Answer:

To prove two vectors to be perpendicular, we must prove that the dot product of those two vectors is equal to zero.

Given:

  • A = 5i - j - 3k
  • B = i + 3j - 5k

Therefore Vector Addition of A and B is:

⇒ A + B = (5i - j - 3k) + (i + 3j - 5k)

⇒ A + B = (6i + 2j - 8k)

Similarly the value of A - B is:

⇒ A - B = (5i - j - 3k) - (i + 3j - 5k)

⇒ A - B = 5i - j - 3k - i - 3j + 5k

⇒ A - B = (4i - 4j + 2k)

Now to prove (A + B) ⊥ (A - B), we need to prove: (A + B).(A - B) = 0

To perform the dot product of two vectors, we have to multiply corresponding components with each other. That is,

⇒ Component of i × Component of i + Component of j × Component of j

Hence we get:

⇒ (A + B).(A - B) = (6i + 2j - 8k).(4i - 4j + 2k)

⇒ (A + B).(A - B) = (6 × 4) + (2 × -4) + (-8 × 2)

⇒ (A + B).(A - B) = 24 - 8 - 16

⇒ (A + B).(A - B) = 0

Since the dot product of two vectors is zero, the angle between the two vectors is 90°.

Hence (A + B) ⊥ (A - B)

Hence Proved.


amansharma264: Nice
Answered by llDianall
79

Given that ,

{\underline{\boxed{\large{\rm{ \sf \overrightarrow{\sf \ A \ } = 5\hat{i} - \hat{j} - 3\hat{k} }}}}}

{\underline{\boxed{\large{\rm{\sf \overrightarrow{\sf \ B \ } = \hat{i} + 3\hat{j} - 5\hat{k}}}}}}

To prove that ,

 \color{brown} \: {\underline{\boxed{\large{\rm{\sf \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } \perp\sf \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }}}}}}

Before proceeding note that :

We know that two non-zero vectors are perpendicular if their scalar product is zero.

____________________________________

Hence , First calculate

(\sf \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ })

(5\hat{i} - \hat{j} - 3\hat{k} +  \hat{i} + 3\hat{j} - 5\hat{k})

6\hat{i}  + 2\hat{j} - 8\hat{k}</p><p>

Similarly, now we'll find

(\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ })

5\hat{i} - \hat{j} - 3\hat{k} - (\hat{i} + 3\hat{j} - 5\hat{k})

4\hat{i}  -  4\hat{j}  +  2\hat{k}

Now , as per the statement we'll prove their scaler product.

(\sf \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ })\ (\sf \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ })

24 \:  - 8 -  \: 16 \:

0

Hence Proved ✔︎✔︎

___________________________________

Hope it helps you please mark it as brainliest if it helps !!

Similar questions