Math, asked by 19093, 4 days ago

Given,
 {x}^{2}  +  {y}^{2}  = 29
xy = 2
find
 {x}^{4}  +  {y}^{4}

Answers

Answered by anindyaadhikari13
13

Given Information:

\rm\hookrightarrow x^{2}+y^{2}=29

\rm\hookrightarrow xy=2

To Determine:

  • The value of x⁴ + y⁴

Solution:

We have:

\rm\longrightarrow x^{2}+y^{2}=29

Squaring both sides, we get:

\rm\longrightarrow (x^{2}+y^{2})^{2}=29^{2}

Using identity (a + b)² = a² + 2ab + b², we get:

\rm\longrightarrow x^{4}+y^{4}+2\cdot x^{2}\cdot y^{2}=841

\rm\longrightarrow x^{4}+y^{4}+2\cdot(xy)^{2}=841

\rm\longrightarrow x^{4}+y^{4}+2\cdot (2)^{2}=841

\rm\longrightarrow x^{4}+y^{4}+8=841

\rm\longrightarrow x^{4}+y^{4}=833

Which is our required answer.

Learn More:

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab

anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions