Math, asked by RishabhRawat7, 1 month ago

Given that: (1 + cosα) (1 + Cosβ) (1 + cosγ) = (1 - cosα)(1 – cosβ) (1 – cos γ) .Show that one of the values of each member of this equality is sinα sinβ sinγ.

• Quality Answer Mark As Brainliest
• Spammers Stay Away!!.​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

(1 +  \cos( \alpha ) )(1 +  \cos( \beta ) )(1 +  \cos( \gamma) ) = (1 -  \cos( \alpha ) )(1 -  \cos( \beta )) (1 -  \cos( \gamma))  \\

Multiply both by (1-\cos(\alpha))(1-\cos(\beta))(1-\cos(\gamma))

 \implies \: (1 +  \cos( \alpha ) )(1 -  \cos( \alpha )) (1 +  \cos( \beta ) )(1 -  \cos( \beta )) (1 +  \cos( \gamma) )(1 -  \cos( \gamma))  = (1 -  \cos( \alpha ) )^{2} (1 -  \cos( \beta ))^{2}  (1 -  \cos( \gamma)) ^{2}  \\

 \implies \: (1 -  \cos^{2} ( \alpha ))(1 -  \cos ^{2} ( \beta ))(1 -  \cos^{2} ( \gamma))  = (1 -  \cos( \alpha ) )^{2} (1 -  \cos( \beta ))^{2}  (1 -  \cos( \gamma)) ^{2}  \\

 \implies \:   \sin^{2} ( \alpha )\sin^{2} ( \beta ) \sin^{2} ( \gamma)  = (1 -  \cos( \alpha ) )^{2} (1 -  \cos( \beta ))^{2}  (1 -  \cos( \gamma)) ^{2}  \\

 \implies \:    (1 -  \cos( \alpha ) ) (1 -  \cos( \beta ))  (1 -  \cos( \gamma))  =  \sin( \alpha )   \sin( \beta )  \sin( \gamma)  \\

Similar questions