Math, asked by chhayamalhotra80, 8 months ago

Given that (1 - x) (1 + x + x² + x3 + x4) is 31/32and x is a rational number, what is1 + x + x2 + x3 + x4 + x5?​

Answers

Answered by Madhav541
5

Answer:

 \frac{63}{32}

Step-by-step explanation:

Given:

(1 - x)(1 + x +   {x}^{2}  +   {x}^{3}   +  {x}^{4} ) =  \frac{31}{32}

 (1 + x +  {x}^{2}  +  {x}^{3}  +  {x}^{4} ) - (x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  +  {x}^{5} ) =  \frac{31}{32}

1 -  {x}^{5}  =  \frac{31}{32}

1 -  \frac{31}{32}  =  {x}^{5}

 \frac{1}{32}  =  {x}^{5}

 =  > x =  \frac{1}{2}

Hence we got value of x

From now,

Required value is

1 + x +  {x}^{2}  +  {x}^{3}  +  {x}^{4}  +  {x}^{5}  = 1 +  \frac{1}{2}  +  { \frac{1}{2} }^{2}  + ....... +  { \frac{1}{2} }^{5}

From sum of n terms of a GP definition

 \frac{1 -  { \frac{1}{2} }^{6} }{1 -  \frac{1}{2} }

 \frac{ {2}^{6} - 1 }{ {2}^{5} }

 \frac{64 - 1}{32}  =  \frac{63}{32}

Done!

Thank you!

Similar questions