Math, asked by charlotteds9, 1 month ago

given that 2 to power of a and 8 to power of b, express a in terms of b

Answers

Answered by anindyaadhikari13
5

\textsf{\large{\underline{Correct Question}:}}

  • Given that 2ᵃ = 8ᵇ. Express a in terms of b.

\textsf{\large{\underline{Solution}:}}

Given that:

 \rm: \longmapsto {2}^{a} =  {8}^{b}

We can also write this equation as:

 \rm: \longmapsto {2}^{a} =  {( {2}^{3} )}^{b}

We know that:

 \rm: \longmapsto {( {x}^{a} )}^{b}  =  {x}^{ab}

Therefore, we get:

 \rm: \longmapsto {2}^{a} =  {2}^{3b}

Comparing base, we get:

 \rm: \longmapsto a = 3b

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

Laws Of Exponents: If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions