Given that 3sinA+5cosA=5, then find the value of (3cosA-5sinA)^2
Answers
Answered by
1
Given that 3sinA+5cosA=5, then find the value of (3cosA-5sinA)^2
Solution,
3sinA+5cosA=5
By squaring both side,
(3sinA+5cosA)^2=25
(3sinA)^2+2.(3sinA).(5cosA)+(5cosA)^2=25
by using formula,
(a+b)^2=a^2+2ab+b^2
9sinA^2+ 2.3.5.sinA.cosA+25cosA^2=25
9sinA^2+30sinAcosA+25cosA^2=25
or, 9(1-cosA^2)+30sinAcosA+25(1-sinA^2)=25 { sinA^2=1-cosA^2 and cosA^2=1-sinA^2}
9-9cosA^2+30sinAcosA+25-25sinA^2-25=0
or, 9-9cosA²+30sinAcosA-25sinA²=0
or, -9+9cosA^2-30sinAcosA+25sinA^2=0
or, 9cosA^2-30sinAcosA+25sinA^2=9
or, (3cosA)^2-2.(3cosA).(5sinA^2)+(5sinA)^2=9
{ (a-b)^2=a^2-2ab+b^2}
(3cosA-5sinA)^2=9
3cosA-5sinA= (+/-)root(9)
3cosA-5sinA=+/-3
Similar questions