Math, asked by Anand2797, 1 year ago

Given that 3sinA+5cosA=5, then find the value of (3cosA-5sinA)^2

Answers

Answered by misbahsajjid4
1

Given that 3sinA+5cosA=5, then find the value of (3cosA-5sinA)^2

Solution,

3sinA+5cosA=5

By squaring both side,

(3sinA+5cosA)^2=25


(3sinA)^2+2.(3sinA).(5cosA)+(5cosA)^2=25


by using formula,

(a+b)^2=a^2+2ab+b^2


9sinA^2+ 2.3.5.sinA.cosA+25cosA^2=25

9sinA^2+30sinAcosA+25cosA^2=25


or, 9(1-cosA^2)+30sinAcosA+25(1-sinA^2)=25 { sinA^2=1-cosA^2 and cosA^2=1-sinA^2}

9-9cosA^2+30sinAcosA+25-25sinA^2-25=0


or, 9-9cosA²+30sinAcosA-25sinA²=0


or, -9+9cosA^2-30sinAcosA+25sinA^2=0


or, 9cosA^2-30sinAcosA+25sinA^2=9


or, (3cosA)^2-2.(3cosA).(5sinA^2)+(5sinA)^2=9

{ (a-b)^2=a^2-2ab+b^2}


(3cosA-5sinA)^2=9


3cosA-5sinA= (+/-)root(9)


3cosA-5sinA=+/-3



Similar questions