given that 3x³+2x²-3x+4 = (AX+B)(X-1)(X+2)+C(X-1)+D find the all value of A, B, C, and D
Answers
Answered by
0
Answer:
A=3, B=-1, C=4, D=6
Step-by-step explanation:
3x³+2x²-3x+4 = (Ax+B)(x-1)(x+2)+C(x-1)+D
= (Ax+B)(x²+x-2)+Cx-C+D
= Ax³+Ax²-2Ax+Bx²+Bx-2B+Cx-C+D
= Ax³+(A+B)x²+(-2A+B+C)x+(-2B-C+D)
By comparison,
A=3.
A+B=2, 3+B=2, B=-1.
-2A+B+C=-3, -6-1+C=-3, C=4.
-2B-C+D=4, 2-4+D=4, D=6.
Answered by
0
Answer:
(ax^2-ax+bx-b) (x+2) +cx-c +d
ax^3-ax^2+bx^2-bx+2ax^2-2ax+2bx-2b+cx-c+d
comparing coefficients of x^3, x^2, x
we get
3=a
a+b=2
b=-1
b+c-2a=-3
-1+c-6=-3
c=4
-2b-c+d=4
2-4+d=4
d=6
Similar questions