English, asked by upadhyayshreya31, 7 months ago

given that 5A - 3 = 216 and ab equals to 15 find the value of 25 square + 9 b square PLZ... SOMEONE GIVE THE ANSWER ​

Answers

Answered by cutiepieangel123
3

Answer:

(5a -3b)^2=16^2

( {x - y})^{2} = {x}^{2} + {y}^{2} - 2xy(x−y)

2

=x

2

+y

2

−2xy

(5a)^2+ (3b)^2 -2*5a*3b=256

25a^2+9b^2-2(15)=256(adding value of ab)

25a^2+9b^2-30=256

25a^2+9b^2=256-30

25a^2+9b^2=226

Answered by kumarsachinsingh486
0

Explanation:

5a -3b)^2=16^2

( {x - y})^{2} = {x}^{2} + {y}^{2} - 2xy(x−y)

2

=x

2

+y

2

−2xy

(5a)^2+ (3b)^2 -2*5a*3b=256

25a^2+9b^2-2(15)=256(adding value of ab)

25a^2+9b^2-30=256

25a^2+9b^2=256-30

25a^2+9b^2=226

Similar questions