Given that a=√2 + √3 , find the value of a-1/a
Answers
a = √2 + √3
=> 1/a = 1 / ( √2 + √3 )
rationalizing ,
=> 1/a = { √2 - √3 } / { ( √2 + √3 ) ( √2 - √3 )
=> 1/a = ( √2 - √3 ) / { (√2)² - (√3)² }
=> 1/a = ( √2 - √3 ) / (-1)
=> -1/a = √2 - √3.............. (1)
now , a - 1/a = √2 + √3 + √2 - √3 ........... ( from (1))
=> a - 1/a = 2√2
Step-by-step explanation:
a = √2 + √3
Therefore
1/a = 1/(√2 + √3)
Since it Has Root in denominator.
Therefore we have to Rationalise it
To remove Root
We have to multiply and divide by the conjugate ie. √2 - √3
1 = 1 × √2 - √3
---- --------- -------------
a √2 + √3 √2 - √3
1/a = (√2 - √3) / (2 - 3) = (√2 - √3) / -1
1/a = √3 - √2
Putting the values
a - 1/a = √2 + √3 - ( √3 - √2)
= √2 + √3 - √3 + √2 = 2√2
Therefore Value of a - 1/a is 2√2