given that a=3,b= -2, and c= -4, evaluate (a + 2b)2square - 4c
Answers
Answered by
1
Answer:
We have, ab
2
c
3
,a
2
b
3
c
4
,a
3
b
4
c
5
are in A.P
Now, A.M≥G.M
⇒
3
a+b+c
≥(abc)
1/3
⇒a+b+c≥3
1/3
(abc)
1/3
but given ab
2
c
3
,a
2
b
3
c
4
,a
3
b
4
c
5
are in A.P (∵abc
=0).
Hence,
2a
2
b
3
c
4
=ab
2
c
3
+a
3
b
4
c
5
2abc=1+a
2
b
2
c
2
⇒(abc−1)
2
=0
Now eq(1) we get
a+b+c≥3(1)
1/3
⇒(a+b+c)≥3
Hence, minimum value of a+b+c is 3
Similar questions