Math, asked by IAmAmritesh5320, 11 months ago

Given that a=alpha and b=beta are roots of 2x^2+x+14=0 find the equation whose roots are a^4 and b^4

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{a and b are roots of $2x^2+x+14=0$}

\textbf{To find:}

\text{The quadraatic equation whose roots are $a^4$ and $b^4$}

\textbf{Solution:}

\text{Consider,}\;2x^2+x+14=0

\text{Then,}

a+b=\dfrac{-1}{2}

a\,b=\dfrac{14}{2}=7

a^2+b^2=(a+b)^2-2\,ab

a^2+b^2=(\frac{-1}{2})^2-2(7)

a^2+b^2=\frac{1}{4}-14

a^2+b^2=\dfrac{1-56}{4}=\frac{-55}{4}

\bf\,a^4+b^4

=(a^2+b^2)^2-2\,a^2b^2

=(\frac{-55}{4})^2-2(7)^2

=\frac{3025}{16}-98

=\frac{3025-1568}{16}

=\frac{1457}{16}

\bf\,a^4\,b^4

=(a\,b)^4

=(7)^4

=2401

\text{The required quadratic equation}

x^2-(a^4+b^4)x+a^4b^4=0

x^2-(\frac{1457}{16})x+2401=0

\implies\boxed{\bf\,16x^2-1457\,x+38416=0}

Find more:

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

Similar questions