Physics, asked by ro27mpbcdcam, 9 months ago

Given that a planets mass and diameter are 3 and 6 times thaf of earth respectively calculate the ratio between the acceleration due to gravity on that planet and that on earth​

Answers

Answered by Anonymous
136

\red{\large\underline{\underline\mathtt{Question:}}}

Given that a Planet's mass and diameter are 3 and 6 times thaf of earth respectively. Calculate the ratio between the acceleration due to gravity on that planet and that on earth.

\purple{\large\underline{\underline\mathtt{To\:find:}}}

The ratio between the. acceleration due to gravity on that planet and that on earth.

\blue{\large\underline{\underline\mathtt{We\:know:}}}

Radius of Earth =  R_{1} \rightarrow \mathtt{6.4 \times 10^{6}m}

Mass of Earth = M_{1} \rightarrow \mathtt{6 \times 10^{24}kg}

\mathtt{ Radius = \dfrac{Diameter}{2}}

\mathtt{g = \dfrac{GM}{R^{2}}}

where,

g = Acceleration due to Gravity

G = Universal Gravitational constant

R = Distance

G = 6.67 \times 10^{-11}

\green{\large\underline{\underline\mathtt{Given:}}}

Diameter of the Planet = D_{2} = 3 \times of Earth

\Rightarrow D_{2} = 6 \times (2 \times 6.4 × 10^{6})

\therefore D_{2} = 76.8 ×\times 10^{6}

We know ,

\Rightarrow Radius = \dfrac{76.8 \times 10^{6}}{2}

\Rightarrow Radius = \dfrac{\cancel{76.8} \times 10^{6}}{\cancel{2}}

\Rightarrow R_{2} \rightarrow Radius = 38.4 \times 10^{6}

Mass of the Planet = M_{2} = 3 \times of Earth

\Rightarrow M_{2} = 3 \times 6 \times 10^{24}

\Rightarrow M_{2} = 18 \times 10^{24}

\red{\large\underline{\underline\mathtt{Solution:}}}

Acceleration due to Gravity on thr surface of Earth

We know,

\mathtt{g = \dfrac{GM}{R^{2}}}

Putting the value in the formula we , get:-

\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{(6.4 \times 10^{6})^{2}}

\Rightarrow g = \dfrac{6.67 \times 6 \times 10^{13}}{6.4 \times 6.4\times 10^{12}}

\Rightarrow g = \dfrac{6.67 \times 6 \times \cancel{10^{13}}}{6.4 \times 6.4\times \cancel{10^{12}}}

\Rightarrow g = \dfrac{6.67 \times 6 \times 10}{6.4 \times 6.4}

\Rightarrow g = 9.8ms^{-2} (Approx.)

  • Acceleration due to gravity in the planet x.

We know,

\mathtt{g = \dfrac{GM}{R^{2}}}

Putting the value in the Formula, we get:-

\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 18 \times 10^{24}}{(38.4 \times 10^{6})^{2}}

\Rightarrow g = \dfrac{6.67 \times 18 \times 10^{13}}{(38.4 \times 10^{6})^{2}}

\Rightarrow g = \dfrac{6.67 \times 18 \times 10^{13}}{38.4 \times 38.4\times 10^{12}}

\Rightarrow g = \dfrac{6.67 \times 18 \times \cancel{10^{13}}}{38.4 \times 38.4\times \cancel{10^{12}}}

\Rightarrow g = \dfrac{6.67 \times 18 \times 10}{38.4 \times 38.4}

\Rightarrow g = 0.81

Ratio of the Acceleration due to gravity on planet X and Earth.

\mathtt{g = \dfrac{GM_{x}}{R^{2}} : g = \dfrac{GM_{e}}{R_{e}^{2}}}

\Rightarrow 0.81 : 9.8

\Rightarrow 1 : 12

{\boxed{\therefore Ratio = 1 : 12}}

Hence , the the ratio of Acceleration due to Gravity on the planet x and Planet earth is 1 : 12....

______________________________________

Answered by aviguru111
25

\huge\bold\red\bigstar{Question}

Given that a Planet's mass and diameter are 3 and 6 times thaf of earth respectively. Calculate the ratio between the acceleration due to gravity on that planet and that on earth.

\purple{\large\underline{\underline\mathtt{To\:find:}}}

The ratio between the. acceleration due to gravity on that planet and that on earth.

\blue{\large\underline{\underline\mathtt{We\:know:}}}

Radius of Earth = R_{1} \rightarrow \mathtt{6.4 \times 10^{6}m}R

1

→6.4×10

6

m

Mass of Earth = M_{1}\rightarrow \mathtt{6 \times 10^{24}kg}M

1

→6×10

24

kg

\mathtt{ Radius = \dfrac{Diameter}{2}}

\mathtt{g = \dfrac{GM}{R^{2}}}

where,

g = Acceleration due to Gravity

G = Universal Gravitational constant

R = Distance

G = 6.67 \times 10^{-11}G=6.67×10

−11

\green{\large\underline{\underline\mathtt{Given:}}}

Diameter of the Planet = D_{2}D

2

= 3 \times of Earth3×ofEarth

\Rightarrow D_{2} = 6 \times (2 \times 6.4 × 10^{6})

\therefore D_{2} = 76.8 ×\times 10^{6}

We know ,

\Rightarrow Radius = \dfrac{76.8 \times 10^{6}}{2}

\Rightarrow Radius = \dfrac{\cancel{76.8} \times 10^{6}}{\cancel{2}}

\Rightarrow R_{2} \rightarrow Radius = 38.4 \times 10^{6}

Mass of the Planet = M_{2} = 3 \times of EarthM

2

=3×ofEarth

\Rightarrow M_{2} = 3 \times 6 \times 10^{24}⇒M

2

=3×6×10

24

\Rightarrow M_{2} = 18 \times 10^{24}⇒M

2

=18×10

24

\red{\large\underline{\underline\mathtt{Solution:}}}

Acceleration due to Gravity on thr surface of Earth

We know,

\mathtt{g = \dfrac{GM}{R^{2}}}

Putting the value in the formula we , get:-

\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{(6.4 \times 10^{6})^{2}}⇒g=

(6.4×10

6

)

2

6.67×10

−11

×6×10

24

\Rightarrow g = \dfrac{6.67 \times 6 \times 10^{13}}{6.4 \times 6.4\times 10^{12}}⇒g=

6.4×6.4×10

12

6.67×6×10

13

\Rightarrow g = \dfrac{6.67 \times 6 \times \cancel{10^{13}}}{6.4 \times 6.4\times \cancel{10^{12}}}⇒g=

6.4×6.4×

10

12

6.67×6×

10

13

\Rightarrow g = \dfrac{6.67 \times 6 \times 10}{6.4 \times 6.4}⇒g=

6.4×6.4

6.67×6×10

\Rightarrow g = 9.8ms^{-2} (Approx.)⇒g=9.8ms

−2

(Approx.)

Acceleration due to gravity in the planet x.

We know,

\mathtt{g = \dfrac{GM}{R^{2}}}g=

R

2

GM

Putting the value in the Formula, we get:-

\Rightarrow g = \dfrac{6.67 \times 10^{-11} \times 18 \times 10^{24}}{(38.4 \times 10^{6})^{2}}⇒g=

(38.4×10

6

)

2

6.67×10

−11

×18×10

24

\Rightarrow g = \dfrac{6.67 \times 18 \times 10^{13}}{(38.4 \times 10^{6})^{2}}

\Rightarrow g = \dfrac{6.67 \times 18 \times 10^{13}}{38.4 \times 38.4\times 10^{12}}

\Rightarrow g = \dfrac{6.67 \times 18 \times \cancel{10^{13}}}{38.4 \times 38.4\times \cancel{10^{12}}}

\Rightarrow g = \dfrac{6.67 \times 18 \times 10}{38.4 \times 38.4}

\Rightarrow g = 0.81⇒g=0.81

Ratio of the Acceleration due to gravity on planet X and Earth.

\mathtt{g = \dfrac{GM_{x}}{R^{2}} : g = \dfrac{GM_{e}}{R_{e}^{2}}}

\Rightarrow 0.81 : 9.8⇒0.81:9.8

\Rightarrow 1 : 12⇒1:12

{\boxed{\therefore Ratio = 1 : 12}}

Hence , the the ratio of Acceleration due to Gravity on the planet x and Planet earth is 1 : 12....

______________________________________

Similar questions