Math, asked by Anonymous, 1 year ago

Given that alpha and beta are the roots of the equation x2=7x+4
Show that alpha3=53alpha+28


❎❎No spamming❎❎

Answers

Answered by phenomenalguy
5

\huge{\bold{\boxed{\red{ hello}}}}

alpha \: is \: a \: root \: of \: the \: eqn \\  {x}^{2}  = 7x + 4 \\ therefore \\  { \alpha }^{2}  = 7 \alpha  + 4  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (1)\\multiply \: both \: side \: by \:  \alpha  \: of \: eqn(1) \\  { \alpha }^{3}  =  7 { \alpha }^{2}  \:   + 4 \alpha  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  (2) \\ subsitute \: the \: (1) \: into \: (2) \\  { \alpha }^{3}  = 7(7  \alpha + 4 ) + 4 \alpha  \\  = 49 \alpha  + 28 + 4 \alpha  \\= 53 \alpha  + 28 \\ hence \: proved

Answered by rishu6845
2

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions