Math, asked by adityakannan005, 9 months ago

Given that α and β are the zeroes of the polynomial p(x) = 3x2 - 6x - 1. Find the polynomial whose zeroes are 1/α² and 1/β²

Answers

Answered by saket29
2

Step-by-step explanation:

find the roots of first eqn

then,

1 \div  { \alpha }^{2}  + 1 \div  { \beta  }^{2}  = ( { \beta }^{2}  +  { \alpha }^{2} ) \div  {( \alpha  \beta )}^{2}

 { \alpha }^{2}  +  { \beta }^{2}  =  { (\alpha  +  \beta) }^{2}  - 2 \alpha  \beta

sum of the roots are

( {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta ) \div  {( \alpha  \beta )}^{2}

products of the roots are

1 \div  {( \alpha  \beta )}^{2}

put the value of Alpha and beta from the given quadratic equation.

you will get the sum and product of roots of desired quadratic equation.

try it, if you didn't get it message me i will give you the

solution.

Answered by prateekmishra16sl
0

Answer:  All polynomials of form a(x² - 42x + 9), where a ≠ 0, will have 1/α² and 1/β² as their zeroes.

Step-by-step explanation:

p(x) = 3x² - 6x - 1 , roots ⇒ α,β

Sum of roots = α + β

\frac{-(-6)}{3} = \alpha + \beta

2 = \alpha + \beta

Product of roots = αβ

\frac{-1}{3} = \alpha  \beta

Let the polynomial whose roots are 1/α² and 1/β² be h(x)

h(x) = ax² + bx + c, a ≠ 0, roots ⇒ 1/α², 1/β²

Sum of roots = \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} }

\frac{-b}{a} = \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} }

\frac{-b}{a} = \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} }

\frac{-b}{a}  = \frac{\alpha^{2} +\beta^{2}}{\alpha^{2} \beta^{2} }

Product of roots = \frac{1}{\alpha^{2}\beta^{2}  }

\frac{c}{a} = \frac{1}{\alpha^{2} } \frac{1}{\beta^{2} }

\frac{c}{a}  = \frac{1}{\alpha^{2} \beta^{2} }

(\alpha +\beta )^{2}  = \alpha^{2} +\beta^{2} +2\alpha \beta

(2)^{2}  = \alpha^{2} +\beta^{2} +2(\frac{-1}{3} )

\frac{14}{3}  = \alpha^{2} +\beta^{2}

\frac{1}{\alpha^{2}\beta^{2}  }  = (\frac{1}{\alpha \beta } )^{2}

\frac{1}{\alpha^{2}\beta^{2}  }  = (-3 )^{2}

\frac{1}{\alpha^{2}\beta^{2}  }  = 9

\frac{-b}{a}  = \frac{\alpha^{2} +\beta^{2}}{\alpha^{2} \beta^{2} }

Therefore,

⇒  \frac{-b}{a}  =\frac{\frac{14}{3} }{\frac{1}{9} }

⇒  \frac{-b}{a}  = \frac{14}{3}*9

⇒  \frac{-b}{a}  = 42

⇒  b  = -42a

\frac{c}{a}  = \frac{1}{\alpha^{2} \beta^{2} }

Therefore,

\frac{c}{a}  = 9

c = 9a

h(x) = ax² + bx + c

⇒ h(x) = ax² - 42ax + 9a

⇒ h(x) = a(x² - 42x + 9)

Hence, all polynomials of form a(x² - 42x + 9), where a ≠ 0, will have 1/α² and 1/β² as their zeroes.

#SPJ2

Similar questions
Math, 9 months ago