Math, asked by Hdhhdg, 10 hours ago

Given that cosec A+cotA=x.Prove that COSA=x²-1÷x²+1

Answers

Answered by vikkiain
0

use \:  \:  \boxed{sin^{2}A  = 1 - cos^{2}A }

Step-by-step explanation:

Given,  \: cosec A + cot A = x \\  \frac{1}{sin A}  +  \frac{cos A}{sin A}  = x \\  \frac{1 + cos A}{sin A}  = x \\ 1 + cos A = x.sin A \\ On  \:  \: square  \:  \: off  \:  \: both \:  \:  sides, \\(1 + cos A)^{2}  =( x.sin A)^{2}  \\ 1 + cos^{2} A + 2cosA =  {x}^{2} .sin^{2}A \\ 1 + cos^{2} A + 2cosA =  {x}^{2} .(1 - cos^{2}A) \\ 1 + cos^{2} A + 2cosA =  {x}^{2}  -  {x}^{2} cos^{2}A \\ 1 + cos^{2} A + 2cosA -  {x}^{2} +  {x}^{2} cos^{2}A = 0 \\ ( {x}^{2} + 1 )cos^{2} A + 2cosA   -   ( {x}^{2}  - 1 ) = 0 \\ ( {x}^{2} + 1 )cos^{2} A + ( {x}^{2}  + 1)cosA  -  ( {x}^{2} - 1 )cosA   -  ( {x}^{2}  - 1 ) = 0 \\ ( {x}^{2} + 1 )cosA(cosA + 1) - ( {x}^{2}  - 1)(cosA + 1) = 0 \\ (cosA + 1) \{ ( {x}^{2} + 1 )cosA - ( {x}^{2} - 1 )\} = 0 \\ ( {x}^{2} + 1 )cosA - ( {x}^{2} - 1 ) = 0 \\ ( {x}^{2} + 1 )cosA  = ( {x}^{2} - 1 ) \\ cosA =  \frac{ {x}^{2} - 1 }{ {x}^{2} + 1 } .

Similar questions