given that in ABCD quadrileteral AC = BD diagnols bisect at right angles . we should prove that ABCD is a quadrilateral
Answers
Answered by
1
Answer:
u an find thiSol: We have a quadrilateral ABCD such that the diagonals AC and BD bisect each other at right angles at O.
∴ In ΔAOB and ΔAOD, we have
AO = AO
[Common]
OB = OD
[Given that O in the mid-point of BD]
∠AOB = ∠AOD
[Each = 90°]
ΔAOB ≌ ΔAOD
[SAS criteria]
Their corresponding parts are equal.
AB = AD...(1)Similarly,AB = BC...(2) BC = CD...(3) CD = AD...(4)
∴ From (1), (2), (3) and (4), we have AB = BC CD = DA
Thus, the quadrilateral ABCD is a rhombus.
Similar questions