Math, asked by paanlatiff15, 9 months ago

Given that log 2  0.3010 and log 7  0.8451 , find the following

(a) log 49 (b) log 560

Answers

Answered by niteshya916640
4

Answer:

Here is the solution for your problem in the image

Attachments:
Answered by mysticd
0

 Given \: log \: 2= 0.3010, \: log \: 5 = 0.6989

 and \: log \: 7 = 0.8451

 \red {a) Value \: of \: log \: 49 }

 = log \: 7^{2}

 = 2 log \: 7

 \boxed{ \pink { \because log \: a^{m} = m log a }}

 = 2 \times 0.8451

\green { = 1.6902}

 \therefore  \red {Value \: of \: log \: 49 }\green { = 1.6902}

 \red{ b) Value \: of \: log \: 560 }

 = log \: ( 2^{4} \times 5 \times 7 )

 =  log \:  2^{4}  + log \:5 + log \: 7

 \boxed{ \blue { \because log \:(mn) = log \: m + log \: n }}

 = 4 log \: 2 + log \:5 + log \: 7

 = 4 \times 0.3010 + 0.6989 + 0.8451

 = 1.2040 + 0.6989 + 0.8451

 = 2.748

 \therefore \red{  Value \: of \: log \: 560 }\green { = 2.748 }

•••♪

Similar questions