Math, asked by saumya2138, 1 year ago

Given that logx =m+n and logy=m-n,value of log10x/y^2 is expressed as

Answers

Answered by monty842311
19

Answer:

Step-by-step explanation:

logx = m+n

logy = m-n

log(10x/y²) = log10x - logy²

                  = log10 + logx - 2logy

                  = 1 + m+n - 2(m-n)

                 = 1-m+3n

Answered by aditya06panda
0

Answer:

-m+3n+1

Step-by-step explanation:

log_{10} x  = m + n

log_{10} y = m - n

log \frac{10x}{y^{2} } = log_{10} 10x- log_{10} y^{2}

log \frac{10x}{y^{2} } = log_{10} 10 + log_{10} x - log_{10}{y^{2}

log\frac{10x}{y^{2} } = log_{10} 10 + log_{10} x - 2 log_{10} y

log\frac{10x}{y^{2}} = 1 + (m+n) - 2(m-n)

log \frac{10x}{y^{2}} = 1 + m +n - 2m + 2n

Hence Solved

Similar questions