Physics, asked by VerifiedAnswer1, 5 months ago

Given that, mass of A is 30kg, mass of B is 5kg, and the system is released from rest, and \textbf{at a certain instant,}the velocity attained by A is 2.5m/s, find the downward displacement of A and the upward displacement of B \textbf{at that instant}
\sf{\\}
Kindly solve using \textsf{Conservation of Mechanical Energy}

Attachments:

Answers

Answered by shadowsabers03
4

Applying constraint equation in the main string passing through the two pulleys,

\sf{\longrightarrow -a_2+2a_1=0}

\sf{\longrightarrow a_2=2a_1}

Since the acceleration is independent of time (constant acceleration) and system is released from rest,

\sf{\longrightarrow v_2=2v_1}

and,

\sf{\longrightarrow s_2=2s_1}

Applying energy conservation on the system,

\sf{\longrightarrow U_{iA}+K_{iA}+U_{iB}+K_{iB}=U_{fA}+K_{fA}+U_{fB}+K_{fB}}

\sf{\longrightarrow m_1gs_1+0+0+0=0+\dfrac{1}{2}\,m_1(v_1)^2+m_2gs_2+\dfrac{1}{2}\,m_2(v_2)^2}

\sf{\longrightarrow m_1gs_1=\dfrac{1}{2}\,m_1(v_1)^2+2m_2gs_1+2m_2(v_1)^2}

\sf{\longrightarrow s_1=\dfrac{(m_1+4m_2)(v_1)^2}{2(m_1-2m_2)g}}

\sf{\longrightarrow s_1=\dfrac{(30+4\times5)(2.5)^2}{2(30-2\times5)10}}

\sf{\longrightarrow\underline{\underline{s_1=0.78125\ m}}}

And,

\sf{\longrightarrow\underline{\underline{s_2=1.56250\ m}}}

Attachments:
Similar questions