Math, asked by dakshsehrawat7812, 2 months ago

Given that one of the zeroes of the cubic polynomial
ax3 + bx2 + cx + d is zero, the sum of the reciprocal of
the other two zeroes is
a) b/a
b) b/c
c) -b/a
d) -b/c​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{One\;of\;zeroes\;of\;ax^3+bx^2+cx+d\;is\;0}

\underline{\textbf{To find:}}

\textsf{The sum of the reciprocal of the other two zeroes}

\underline{\textbf{Solution:}}

\mathsf{Let\;the\;other\;two\;zeroes\;be\;\alpha\;and\;\beta}

\mathsf{Then,}

\mathsf{\sum_1=\alpha+\beta+0=\dfrac{-b}{a}}

\implies\mathsf{\alpha+\beta=\dfrac{-b}{a}}

\mathsf{\sum_2=\alpha\beta+\beta\,0+0\,\alpha=\dfrac{c}{a}}

\implies\mathsf{\alpha\beta=\dfrac{c}{a}}

\mathsf{Now,}

\textsf{Sum of the reciprocal of other two zeroes}

\mathsf{=\dfrac{1}{\alpha}+\dfrac{1}{\beta}}

\mathsf{=\dfrac{\alpha+\beta}{\alpha\beta}}

\mathsf{=\dfrac{\dfrac{-b}{a}}{\dfrac{c}{a}}}

\mathsf{=\dfrac{-b}{c}}

\underline{\textbf{Answer:}}

\textsf{Option(d) is correct}

\underline{\textbf{Find more:}}

If the zeroes of cubic polynomial x3-15x2+74x-120 are the form a,a+b and a+2b for some positive real number, than the value of a and b are​

https://brainly.in/question/40663788  

Form a cubic polynomial whose zeroes are 2 , 1 , 1.

https://brainly.in/question/16999897

Answered by ItzJanviHere
0

Answer:

hi please give brainliest plz follow

Step-by-step explanation:

hi thanks for following di

sis ?

intro

thanks

Similar questions