Math, asked by frahsyhf, 11 months ago

given that sec x - 5 tan x = 3 cos x , show that 3 sin2 x - 5 sin x - 2 = 0

Answers

Answered by shivk32211223
1

secx-5tanx=3cosx or secx/cosx-5tanx/cosx-3=0 or 1/cos^2x-5sinx/cos^2x-3=0 or 1-5sinx-3cos^2x=0 or 1-5sinx-3(1-sin^2x)=0 or 1-5sinx-3+3sin^2x=0 or3sin^2x-5sinx-2=0 ...hence proved.

Answered by sonuojha211
7

Answer:

It has been proves that:

3\,sin^2x-5sinx-2=0.

Step-by-step explanation:

Given that:

secx-5tanx=3cosx

Dividing both side of the given equation by cosx.

Hence we get:

\dfrac{secx}{cosx}-\dfrac{5tanx}{cosx}=\dfrac{3cosx}{cosx}

Formula used below has given here:

secx=\dfrac{1}{cosx}\\tanx=\dfrac{sinx}{cosx}

Therefore:

\dfrac{1}{cosx\cdot cosx}-\dfrac{\dfrac{5sinx}{cosx}}{cosx}=3

\dfrac{1}{cos^2x}-\dfrac{5sinx}{cos^2x}=3

\dfrac{1-5sinx}{cos^2x}=3

1-5sinx=3cos^2x

Using trigonometric formulas:

sin^2x+cos^2x=1\\cos^2x=(1-sin^2x)

Substituting the values:

1-5sinx=3(1-sin^2x)\\1-5sinx=3-3sin^2x\\3sin^2x+1-3-5sinx=0\\3sin^2x-5sinx-2=0

Proved.

Similar questions