given that sin 0=√3/2 and cos B=0 then what is the value of (B - A )
Answers
Answered by
4
Step-by-step explanation:
Given sin(A+B)=1
⇒sin(A+B)=sin90
o
(∵sin90
o
=1)
⇒A+B=90
o
…………(1)
Again, cos(A−B)=
3
/2
⇒cos(A−B)=cos30
o
(∵cos30
o
=
3
/2)
⇒A−B=30
o
…………(2)
Adding (1)+(2)
A+B+A−B=90
o
+30
o
⇒2A=120
o
⇒A=120/2
⇒A=60
o
Putting A=60
o
in equation-(2) we get
A−B=30
o
⇒60
o
−B=30
o
⇒60
o
−30
o
=B
⇒B=30
o
∴A=60
o
;B=30
o
.
Answered by
5
Answer:
The value of (B - A) is equal to "30°".
Step-by-step explanation:
We have,
\sin\ A = \dfrac{\sqrt{3} }{2}sin A=
2
3
and \cos\ B = 0cos B=0
∴ \sin\ A = \dfrac{\sqrt{3} }{2}sin A=
2
3
⇒ \sin\ A = \sin\ 60sin A=sin 60
⇒ A = 60°
And,
\cos\ B = 0cos B=0
\cos\ B = \cos\ 90cos B=cos 90
⇒ B = 90°
∴ B - A = 90° - 60° = 30°
Hence, the value of (B - A) is equal to 30°.
Similar questions