Math, asked by sriharina07, 1 month ago

given that sin 0=√3/2 and cos B=0 then what is the value of (B - A )​

Answers

Answered by achu3484
4

Step-by-step explanation:

Given sin(A+B)=1

⇒sin(A+B)=sin90

o

(∵sin90

o

=1)

⇒A+B=90

o

…………(1)

Again, cos(A−B)=

3

/2

⇒cos(A−B)=cos30

o

(∵cos30

o

=

3

/2)

⇒A−B=30

o

…………(2)

Adding (1)+(2)

A+B+A−B=90

o

+30

o

⇒2A=120

o

⇒A=120/2

⇒A=60

o

Putting A=60

o

in equation-(2) we get

A−B=30

o

⇒60

o

−B=30

o

⇒60

o

−30

o

=B

⇒B=30

o

∴A=60

o

;B=30

o

.

Answered by khadijamukhtar214
5

Answer:

The value of (B - A) is equal to "30°".

Step-by-step explanation:

We have,

\sin\ A = \dfrac{\sqrt{3} }{2}sin A=

2

3

and \cos\ B = 0cos B=0

∴ \sin\ A = \dfrac{\sqrt{3} }{2}sin A=

2

3

⇒ \sin\ A = \sin\ 60sin A=sin 60

⇒ A = 60°

And,

\cos\ B = 0cos B=0

\cos\ B = \cos\ 90cos B=cos 90

⇒ B = 90°

∴ B - A = 90° - 60° = 30°

Hence, the value of (B - A) is equal to 30°.

Similar questions