Given that sin θ + 2 cos θ = 1, then prove that 2sinθ - cos θ = 2
Answers
Answered by
0
Answer:
thitha=90
2sin90-cos90=2(1) -0=2
Answered by
2
HELLO DEAR,
GIVEN:- sin∅ + 2cos∅ = 1
now, on squaring both side
we get,
sin²∅ + 4cos²∅ + 4sin∅cos∅ = 1
=> (1 - cos²∅) + 4(1 - sin²∅) + 4sin∅cos∅ = 1
=> 1 + 4 - cos²∅ - 4sin²∅ + 4sin∅cos∅ = 1
=> 5 - cos²∅ - 4sin²∅ + 4sin∅cos∅ = 1
=> 4sin²∅ + cos²∅ - 4sin∅cos∅ = 4
=> (2sin∅ - cos∅)² = (2)²
taking square root both side,
=> 2sin∅ - cos∅ = 2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions