Math, asked by Anonymous, 1 year ago

Given that sin¢ = 3/5 .

Find other trigonometry ratio if ¢ lies in first quadrant.​

Answers

Answered by incrediblekaur
63

Answer:

Your answer is in the above attachment

Attachments:

Brâiñlynêha: nyc ✌️✌️di
Anonymous: Good✌
Blaezii: Nice didi
Anonymous: ✔✔osm..❤
mysticd: Draw a figure in first quadrant
mysticd: What is theta here . She/he wants ratios related angle ¢
incrediblekaur: assume that thereis theta
Swetha02: Nice answer, didi
Answered by Anonymous
145

\mathfrak{\underline{\underline{\green{Answer:-}}}}

cosA = \dfrac{4}{5}

tanA = \dfrac{3}{4}

cotA = \dfrac{4}{3}

secA = \dfrac{5}{4}

cosecA = \dfrac{5}{3}

\mathfrak{\underline{\underline{\green{Explanation:-}}}}

Given:

sinA = \dfrac{3}{5}

\\

To Find:

The other trigonometric ratios in the first quadrant

\\

Solution:

In a right ΔABC, [refer the attachment]

\mathsf{ sinA = \dfrac{3}{5}}

As we know

\boxed{\pink{ sin A = \dfrac{Opposite\: side}{Hypotenuese}}}

So,

\mathsf{ sinA = \dfrac{3}{5} = \dfrac{BC}{AC}}

Therefore

BC = 3 units

AC = 5 units

AB = ??

\\

Let us find the value of AB

From Pythagoras theorem

\boxed{\pink{ {AC}^{2}= {AB}^{2}+{BC}^{2}}}

\mathsf{ {AC}^{2}= {AB}^{2}+{BC}^{2}}

\mathsf{ {5}^{2}= {AB}^{2}+{3}^{2}}

\mathsf{ 25= {AB}^{2}+{9}}

\mathsf{ {AB}^{2}= 25-9}

\mathsf{ {AB}^{2}= 16}

\mathsf{ AB= \sqrt{16} }

\mathsf{ AB= 4 \: units}

\\

Let us find the other ratios

CosA

\boxed{\red{ cosA = \dfrac{Adjacent\: side}{Hypotenuese}}}

\mathsf{ cosA = \dfrac{AB}{AC}}

\mathsf{ cosA = \dfrac{4}{5}}

\\

tanA

\boxed{\orange{ tanA = \dfrac{Opposite\: side}{Adjacent \: side}}}

\mathsf{ tanA = \dfrac{BC}{AB}}

\mathsf{ tanA= \dfrac{3}{4}}

\\

cotA

\boxed{\pink{ cot A = \dfrac{Adjacent\: side}{Opposite \: side}}}

\mathsf{ cotA = \dfrac{AB}{BC}}

\mathsf{ cotA = \dfrac{4}{3}}

\\

secA

\boxed{\green{ secA = \dfrac{Hypotenuese}{Adjacent \: side}}}

\mathsf{ secA = \dfrac{AC}{AB}}

\mathsf{ secA = \dfrac{5}{4}}

\\

cosecA

\boxed{\blue{ cosecA = \dfrac{Hypoteneuse}{Opposite\: side}}}

\mathsf{ cosecA = \dfrac{AC}{BC}}

\mathsf{ cosecA = \dfrac{5}{3}}

\\

\mathbb{\red{NOTE:-}}

Assume "A" as '¢'

Attachments:

Anonymous: rocked it bro ☺
Anonymous: Osm❤
DhanyaDA: super macha
janvi47: kyaa baat h
TANU81: Awesome bro ⭐_⭐
sairambandari: extraordinary raa❤❤
varshini1101: Nice answer ❤
tina9961: fantastic
BloomingBud: wonderful answer dear :)
BitByBitGigaBit: wownderful
Similar questions