Math, asked by rishukumarjha116, 23 hours ago

Given that sinƟ=a/b ,then tanƟ is equal to (a) √2+ 2 (b) √ 2−2 (c) √2− 2 (d) √ 2−2​

Answers

Answered by amitnrw
0

Given : Sinθ = a/b

To Find :  Tanθ

1.  \dfrac{b}{ \sqrt{a^2+b^2} }

2. \dfrac{b}{ \sqrt{b^2-a^2} }

3. \dfrac{a}{ \sqrt{a^2+b^2} }

4. \dfrac{a}{ \sqrt{b^2-a^2} }

Solution:

Sinθ = a/b

Sinθ = Perpendicular / Hypotenuse

Perpendicular = a

Hypotenuse =  b

Pythagorean theorem: square on the hypotenuse of a right-angled triangle is  equal to the sum of the squares of the other two perpendicular sides.

Hypotenuse² = base² + Perpendicular²

b² = base²  + a²

=> base² = b² - a²

=> base = √b² - a²

tanθ = Perpendicular / Base

=> tanθ =  a/√b² - a²

tanθ =   \dfrac{a}{ \sqrt{b^2-a^2} }

Correct option is d) \dfrac{a}{ \sqrt{b^2-a^2} }

learn more:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Attachments:
Similar questions