Math, asked by purva97, 1 year ago

given that sin alpha = root 3/2 and cos beeta = 0 then find the Value of beta - alpha ​

Answers

Answered by akshayaiyer
510

Answer:

Step-by-step explanation:

given ,

sin α = √3/2 = sin 60

cos β = 0 = cos 90

β -  α = 90 - 60 = 30

hope this answer could help you :)

Answered by stefangonzalez246
5

Given data: sin\alpha ={\frac{\sqrt{3} }{2 } and cos \beta =0

To Find: \beta -\alpha

Solution:

To find the value of \alpha, consider sin\alpha ={\frac{\sqrt{3} }{2 }

By using trignometric table, the standard angle can be found.

The values of, sin 0°=0, sin 30°=\frac{1}{2}, sin 45°=\frac{1}{\sqrt{2} }, sin 60°={\frac{\sqrt{3} }{2} }, sin 90°=1.

Hence, sin 60°={\frac{\sqrt{3} }{2} }  

\alpha =60°

To find the value of \beta,

Consider cos\beta =0

From the trignometric table, the standard angle can be found.

The value of, cos 0°=1, cos 30°=\frac{\sqrt{3} }{2}, cos 45°=\frac{1}{\sqrt{2} }, cos 60°=\frac{1}{2}, cos 90°=0.

Hence, cos 90°=0

\beta =90°

\beta -\alpha=90°-60°

\beta -\alpha = 30°

Therefore, the value of \beta -\alpha = 30°.

Similar questions