Given that sin θ =
then tan θ =………
Answers
_______________________
★ Correct question :-
If sinθ = a/b , then find tanθ
_______________________
★ Solution :-
Given ,
- sinθ = a/b
We need to find ,
- tanθ = ?
Methods of finding tanθ
- Method 1 :- By finding the other side of triangle and finding.
- Method 2 :- By finding cosθ and using tanθ = sinθ/cosθ
____________________
• Method 1 :-
sinθ = a/b
If sinθ = a/b , opposite side of θ = a & Hypotenuse of ∆ = b
Using Pythagoras theorem,
Hypotenuse² = Base² + Height²
→ b² = Base² + a²
→ b² - a² = Base²
→ Base² = √b² - a² = adjacent side
Now , finding tanθ
tanθ = Opposite/Adjacent
Where,
- Opposite = a
- Adjacent = √b² - a²
→ tanθ = a/√b² - a²
____________________
• Method 2 :-
sinθ = a/b
As we know that
cosθ = ±√1 - sin²θ
Substituting we have ,
→ cosθ = √1 - (a/b)²
→ cosθ = √1 - a²/b²
→ cosθ = √b² - a²/b²
Using laws of exponents
• √(a/b) = √a/√b
Similarly
→ cosθ = √b² - a²/√b²
→ cosθ = √( b² - a² )/b
Now , substituting in tanθ = sinθ/cosθ
→ tanθ = { [ a/b ]/[ ( √b² - a² )/b ] }
→ tanθ = a/√b² - a²
____________________
Hence , tanθ = a/√b² - a²