Math, asked by archanasingh040305, 7 months ago

Given that sin θ =



then tan θ =………​

Answers

Answered by ItzArchimedes
5

_______________________

Correct question :-

If sinθ = a/b , then find tanθ

_______________________

Solution :-

Given ,

  • sinθ = a/b

We need to find ,

  • tanθ = ?

Methods of finding tanθ

  • Method 1 :- By finding the other side of triangle and finding.
  • Method 2 :- By finding cosθ and using tanθ = sinθ/cosθ

____________________

Method 1 :-

sinθ = a/b

If sinθ = a/b , opposite side of θ = a & Hypotenuse of ∆ = b

Using Pythagoras theorem,

Hypotenuse² = Base² + Height²

→ b² = Base² + a²

→ b² - a² = Base²

→ Base² = √b² - a² = adjacent side

Now , finding tanθ

tanθ = Opposite/Adjacent

Where,

  • Opposite = a
  • Adjacent = √b² - a²

tanθ = a/b² -

____________________

Method 2 :-

sinθ = a/b

As we know that

cosθ = ±1 - sin²θ

Substituting we have ,

→ cosθ = √1 - (a/b)²

→ cosθ = √1 - a²/b²

→ cosθ = √b² - a²/b²

Using laws of exponents

• √(a/b) = √a/√b

Similarly

→ cosθ = √b² - a²/√b²

→ cosθ = √( b² - a² )/b

Now , substituting in tanθ = sinθ/cosθ

→ tanθ = { [ a/b ]/[ ( √b² - a² )/b ] }

tanθ = a/b² -

____________________

Hence , tanθ = a/b² -

______________________

Similar questions