given that sin theta + 2 cos theta is equal to 1 then prove that 2 sin theta minus cos theta is equal to 2
Answers
Answered by
4
given that:
sinx+2cosx=1
(where theta is x)
by squaring to both sides...
(sinx+2cosx)^2=1^2
sin^2x+4cos^2x+4sinxcosx=1
(.:,sin^2x+cos^2x=1)
then,
(1-cos^2x)+4(1-sin^2x)+4sinxcosx=1
1-cos^2x+4-4sin^2x+4sinxcosx=1
-(2sinx-cosx)^2+1+4=1
-(2sinx-cosx)^2+5=1
-(2sinx-cosx)^2=-4
on under roots of both sides
2sinx-cosx=2
Hence proved...
Similar questions
Chemistry,
6 months ago
Science,
6 months ago
Social Sciences,
6 months ago
English,
1 year ago
English,
1 year ago