Math, asked by arianarin, 1 year ago

Given that sinA + 2cosA=1,then prove that 2sinA - cosA=2

Answers

Answered by pearlrubyththom
6
sinA+2cosA=1
(sq. on both sides)
sin^2A + 4cos^2 +4 sinA cosA =1
4cos^2 A+4 sinA. cos A = 1- sin^2A
4cos^2 A+ 4 sinA .cosA = cos^2A
3 cos^2 A + 4 sinA .cosA =0
3 cos^2 A = - 4 sinA .cosA      ....(i)

RHS
= (2 sinA -cosA)^2   => 4 sin^2 A+ cos^2A- 4 sinA .cosA
                                         4 sin^2A + cos^2 A+ 3cos^2 A       [from (i) ]
                                          4 sin^2 A + 4 cos^2 A
                                          4 ( sin^2 A + cos^2 A )
                                           4
                                          (2)^2

therefore , 2sinA - CosA=2


Answered by arolkarsunilp5dprh
8
Refer to the below image for the solution
Attachments:
Similar questions