Given that sinA + 2cosA=1,then prove that 2sinA - cosA=2
Answers
Answered by
6
sinA+2cosA=1
(sq. on both sides)
sin^2A + 4cos^2 +4 sinA cosA =1
4cos^2 A+4 sinA. cos A = 1- sin^2A
4cos^2 A+ 4 sinA .cosA = cos^2A
3 cos^2 A + 4 sinA .cosA =0
3 cos^2 A = - 4 sinA .cosA ....(i)
RHS
= (2 sinA -cosA)^2 => 4 sin^2 A+ cos^2A- 4 sinA .cosA
4 sin^2A + cos^2 A+ 3cos^2 A [from (i) ]
4 sin^2 A + 4 cos^2 A
4 ( sin^2 A + cos^2 A )
4
(2)^2
therefore , 2sinA - CosA=2
(sq. on both sides)
sin^2A + 4cos^2 +4 sinA cosA =1
4cos^2 A+4 sinA. cos A = 1- sin^2A
4cos^2 A+ 4 sinA .cosA = cos^2A
3 cos^2 A + 4 sinA .cosA =0
3 cos^2 A = - 4 sinA .cosA ....(i)
RHS
= (2 sinA -cosA)^2 => 4 sin^2 A+ cos^2A- 4 sinA .cosA
4 sin^2A + cos^2 A+ 3cos^2 A [from (i) ]
4 sin^2 A + 4 cos^2 A
4 ( sin^2 A + cos^2 A )
4
(2)^2
therefore , 2sinA - CosA=2
Answered by
8
Refer to the below image for the solution
Attachments:
Similar questions