Given that tan (A+B) = (tanA + taB)/ (1+tanAtanB) Find the value of tan 75°
Answers
Answered by
1
Answer:
Let A= 45° B= 30°
then,
tan75°= tan(45°+30°)= (tan45°+tan30°)/(1-tan45°.tan30°)
= [1+(1/√3)]/[1-(1/√3)]
=(√3+1)/(√3-1) Ans.
or,
= (√3+1)²/2
= (4+2√3)/2
=2+√3 Ans.
Saby123:
Nice!!!
Answered by
6
EXPLANATION.
To find value of tan 75°.
As we know that,
Formula of :
⇒ tan(A + B) = [tan(A) + tan(B)/1 - tan(A).tan(B)].
⇒ tan(75°) = tan(45°) + tan(30°).
⇒ tan(45°) = 1.
⇒ tan(30°) = 1/√3.
Using this formula in the equation, we get.
⇒ tan(75°) = [tan(45°) + tan(30°)/1 - tan(45°).tan(30°)].
⇒ tan(75°) = [1 + 1/√3]/[1 - 1 x 1/√3].
⇒ tan(75°) = (√3 + 1)/(√3 - 1).
MORE INFORMATION.
(1) sin2θ = 2sinθcosθ. = 2tanθ/1 + tan²θ.
(2) cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) tan2θ = 2tanθ/1 - tan²θ.
(4) sin3θ = 3sinθ - 4sin³θ.
(5) cos3θ = 4cos³θ - 3cosθ.
(6) tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
Similar questions