Math, asked by bh1vyasr55, 10 months ago

given that tan(A -B)=tanA-tanB/1+tanAtanB,evaluate tan 45 degree in two ways
1}taking A=60 degree,B=45 degree
2}taking A=45 degree,b=30degree

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{tan(A-B)=\dfrac{tanA-tanB}{1+tanA\;tanB}}

\textbf{To find:}

\textsf{The value of}\;\mathsf{tan15^\circ}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{tan(A-B)=\dfrac{tanA-tanB}{1+tanA\;tanB}}

\mathsf{Take,\;A=60^\circ,\;B=45^\circ}

\mathsf{tan(60^\circ-45^\circ)=\dfrac{tan60^\circ-tan45^\circ}{1+tan60^\circ\;tan45^\circ}}

\mathsf{tan(15^\circ)=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}}

\mathsf{tan(15^\circ)=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}}

\mathsf{Take,\;A=45^\circ,\;B=30^\circ}

\mathsf{tan(45^\circ-30^\circ)=\dfrac{tan45^\circ-tan30^\circ}{1+tan45^\circ\;tan30^\circ}}

\mathsf{tan(15^\circ)=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}}}

\mathsf{tan(15^\circ)=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}}

\mathsf{tan(15^\circ)=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}}

Answered by mahek77777
1

\textbf{Given:}

\mathsf{tan(A-B)=\dfrac{tanA-tanB}{1+tanA\;tanB}}

\textbf{To find:}

\textsf{The value of}\;\mathsf{tan15^\circ}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{tan(A-B)=\dfrac{tanA-tanB}{1+tanA\;tanB}}

\mathsf{Take,\;A=60^\circ,\;B=45^\circ}

\mathsf{tan(60^\circ-45^\circ)=\dfrac{tan60^\circ-tan45^\circ}{1+tan60^\circ\;tan45^\circ}}

\mathsf{tan(15^\circ)=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}}

\mathsf{tan(15^\circ)=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}}

\mathsf{Take,\;A=45^\circ,\;B=30^\circ}

\mathsf{tan(45^\circ-30^\circ)=\dfrac{tan45^\circ-tan30^\circ}{1+tan45^\circ\;tan30^\circ}}

\mathsf{tan(15^\circ)=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}}}

\mathsf{tan(15^\circ)=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}}

\mathsf{tan(15^\circ)=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}}

Similar questions