Given that tanA + secA = k, show that = cosecA .
Answers
Answered by
0
Step-by-step explanation:
LHS ↓
RHS ↑
Answered by
1
Answer:
k²−1
k²+1
\tt\dfrac{(tanA + secA)²+1)}{(tanA+secA)²-1}
(tanA+secA)²−1
(tanA+secA)²+1)
\tt\dfrac{tan²A + sec²A + 2tanAsecA+1}{tan²A+sec²A +2tanAsecA -1}
tan²A+sec²A+2tanAsecA−1
tan²A+sec²A+2tanAsecA+1
\tt\dfrac{(1+tan²A) + sec²A + 2tanAsecA}{tan²A+(sec²A-1) +2tanAsecA}
tan²A+(sec²A−1)+2tanAsecA
(1+tan²A)+sec²A+2tanAsecA
\tt\dfrac{2sec²A + 2tanAsecA}{2tan²A +2tanAsecA}
2tan²A+2tanAsecA
2sec²A+2tanAsecA
\tt\dfrac{2secA(secA + tanA)}{2tanA(tanA +secA)}
2tanA(tanA+secA)
2secA(secA+tanA)
\tt\dfrac{secA}{tanA}
tanA
secA
\tt\dfrac{1}{cosA}×\dfrac{cosA}{sinA}
cosA
1
×
sinA
cosA
\tt\dfrac{1}{sinA}
sinA
1
\tt{cosecAcosecA}
Similar questions